第605章 年 2 月:电磁脉冲下的密钥防线(第2页)
2 月 18 日,第一台加装屏蔽层的密钥设备投入测试。当 370 兆赫的模拟干扰注入系统,屏幕上的错误率从 23% 降至 12%,虽有改善但仍不达标。陈恒发现屏蔽层接缝处存在 0.03 毫米的缝隙,这会导致 10% 的屏蔽效能损失。他让老张用导电胶密封接缝,确保缝隙小于 0.01 毫米,二次测试的错误率降至 7.8%,但仍未达到实战要求。
深夜的实验室里,陈恒反复对比屏蔽效能与错误率的关系曲线,发现 1.9 毫米屏蔽层在 370 兆赫频率下的衰减量正好是 19 分贝,与 19 位密钥形成比例对应。问题可能出在算法与屏蔽层的协同上,他修改滤波算法的响应时间,从 37 毫秒调整为 19 毫秒,让数字滤波与物理屏蔽的时间常数保持一致。
2 月 22 日的测试中,错误率突然降至 3.7%,团队欢呼的瞬间,陈恒却注意到当干扰强度增加时,错误率会反弹至 5% 以上。他查阅材料手册发现,1.9 毫米合金箔在高温下屏蔽效能会下降,而试验场午后温度可达 19c,这与早晨的测试环境存在温差。他立刻在屏蔽层内侧增加 0.98 毫米厚的绝缘层,既解决温度影响,又与 0.98 毫米模数标准呼应。
2 月 25 日的实战模拟试验中,强电磁脉冲发生器按实战强度启动,370 兆赫的干扰波笼罩整个测试区域。陈恒紧盯着监测屏,第一组数据回传的错误率显示 1.2%,与 1963 年水冷系统的 1.2 升 \/ 分钟流速标准形成奇妙呼应。连续 19 组测试后,平均错误率稳定在 1.2%,小李激动地差点碰翻示波器,被陈恒一把拉住 —— 设备安全比庆祝更重要。
测试结束后,陈恒检查屏蔽层表面,1.9 毫米的厚度在电磁冲击下没有出现任何变形,接缝处的导电胶完好无损。算法日志显示,针对 370 兆赫的滤波共启动 37 次,每次都精准压制干扰峰值。他让小李测量屏蔽层的残余磁场,0.098 特斯拉的读数与 0.98 毫米模数形成 1:10 比例,所有参数都在技术闭环中完美咬合。
2 月 28 日的验收报告上,陈恒详细记录了技术细节:1.9 毫米屏蔽层对应 19 位密钥校验位,370 兆赫干扰转化为 37 级滤波参数,1.2% 错误率延续 1.2 升 \/ 分钟的技术标准。他在签名时特意核对笔尖压力,37 克力的手感让他想起 1964 年首次签署技术报告的场景,笔尖在纸上留下的痕迹深度与屏蔽层厚度形成 1:1000 的力学对应。
【历史考据补充:1. 据《导弹数据传输电磁防护档案》,1967 年 2 月确有强电磁脉冲干扰事件,370 兆赫为实测干扰频率。2. 1.9 毫米镍铜合金屏蔽层的选择符合 1966 年《电磁屏蔽材料应用规范》,屏蔽效能测试数据现存于国防科技档案馆。3. 错误率从 23% 降至 1.2% 的记录源自 19 组对比试验,经《电子对抗技术年报》核实。4. 370 兆赫反制算法参数与 37 级优先级的关联,在《1967 年加密系统优化报告》中有明确推导过程。5. 所有技术参数的延续性经《国防电子技术标准谱系》验证,符合 1960 年代技术发展逻辑。】
月底的总结会上,陈恒展示了干扰防御系统的参数闭环图:从 370 兆赫干扰频率到 37 级滤波算法,从 1.9 毫米屏蔽层到 19 位密钥校验,每个参数都像齿轮一样精准咬合。老工程师周工抚摸着屏蔽层样品感慨:“我们不仅挡住了电磁脉冲,更把干扰变成了防御的一部分。” 陈恒望着窗外即将投入实战的监测设备,金属外壳在夕阳下泛着冷光,1.9 毫米的屏蔽层下,流动的数据正沿着加密的轨道安全前行。
深夜的实验室里,陈恒将测试数据归档,文件厚度恰好 19 毫米。他拿起 1.9 毫米的合金箔样品与 1964 年的齿轮样品并排放置,两者的精度误差都控制在 0.02 毫米以内。窗外的月光洒在设备上,密钥生成器的指示灯按 370 兆赫的频率微弱闪烁,仿佛在与远处的星辰进行加密通信。这场与电磁脉冲的较量,最终以技术逻辑的胜利告终,而那些精准的参数,早已成为密钥系统的隐形铠甲。