第584章 年5月:振动密合
卷首语
【画面:1965 年 5 月的导弹试验场控制室,示波器上的电磁干扰波形(杂乱无章的高频震荡)与发动机振动波形(稳定的 37 赫兹正弦曲线)形成对比,叠加后显示 “振动耦合加密” 技术生效时,干扰波形被密钥脉冲完全覆盖。特写同步误差监测仪,±0.02 秒的红色阈值线内,振动基准与密钥脉冲的重合度达 99.7%。数据流动画显示:37 赫兹振动频率 = 1964 年 11 月齿轮振动频率 = 1963 年笔迹压力 37 克力的物理转化,±0.02 秒误差 = 1964 年双密钥验证误差的 1/10,两者叠加生成的 “37+0.02=37.02” 与 1965 年 4 月的沙粒校验次数 3700 形成 1:99.9 的精度升级比。字幕浮现:当发动机的每一次振动都成为密钥的时间基准,37 赫兹的频率与 ±0.02 秒的误差共同编织抗干扰的加密屏障 ——1965 年 5 月的技术突破不是偶然,是中国密码人用机械韵律驯服电磁干扰的必然结果。】
【镜头:陈恒站在导弹发动机测试台旁,振动传感器的探头吸附在缸体上,检测仪屏幕显示 37 赫兹的稳定波形,与旁边示波器上的电磁干扰波形形成鲜明对比。控制台上的加密设备指示灯闪烁紊乱,当振动耦合开关开启后,指示灯按 37 赫兹频率规律跳动。远处报务员正在记录振动数据,笔记本上的波形草图与 1964 年 11 月齿轮振动波形完全重合,标注的 “37hz = 密钥心跳” 字样被红笔圈出。】
1965 年 5 月 12 日清晨,导弹试验场的电磁干扰比预期强烈。第三次指令传输试验因干扰中断时,陈恒注意到控制台的发动机振动监测仪始终显示 37 赫兹 —— 这个频率在干扰最严重时仍保持 ±0.5 赫兹的稳定波动。“干扰能打乱电波,但打不乱机械振动的固有频率,” 他对技术组说,手指在振动波形图上划出密钥脉冲的理想轨迹,每 37 赫兹的波峰处标注 “密钥触发点”,与 1964 年 11 月齿轮的振动频率完全一致。
当天的应急会议上,陈恒展示了 “振动耦合加密” 方案:将导弹发动机的 37 赫兹振动作为时间基准,密钥脉冲严格同步于振动波峰,电磁干扰的随机波动因无法匹配机械振动规律而被过滤。他在黑板上计算同步误差:“发动机振动周期 27 毫秒,密钥脉冲必须落在 ±0.02 秒窗口内,相当于振动波峰前后的 7.4% 区间。” 用粉笔划出的误差范围(37 赫兹波形上的红色短线)与 1964 年双密钥验证的 0.02 毫米机械误差形成精度呼应,战士们发现,这个区间长度恰好与 1963 年签名笔迹的飞白长度一致。
【特写:陈恒用游标卡尺测量振动波形图上的波峰间距(27 毫米),与 37 赫兹周期(27.027 毫秒)形成 1:1000 比例转换。同步误差监测仪的指针在 ±0.02 秒间波动,最小刻度 0.001 秒的精度与 1965 年 1 月算盘的磨损深度 0.37 毫米形成数值关联。测试用的振动传感器线缆长度(3.7 米)与频率数值 37 形成 1:10 比例,与 1964 年沙地图谱比例一致。】